Passage of time in a planck scale rooted local inertial structure

Abstract
It is argued that the `problem of time' in quantum gravity necessitates a refinement of the local inertial structure of the world, demanding a replacement of the usual Minkowski line element by a 4+2n dimensional pseudo-Euclidean line element, with the extra 2n being the number of internal phase space dimensions of the observed system. In the refined structure, the inverse of the Planck time takes over the role of observer-independent conversion factor usually played by the speed of light, which now emerges as an invariant but derivative quantity. In the relativistic theory based on the refined structure, energies and momenta turn out to be invariantly bounded from above, and lengths and durations similarly bounded from below, by their respective Planck scale values. Along the external timelike world-lines, the theory naturally captures the `flow of time' as a genuinely structural attribute of the world. The theory also predicts expected deviations---suppressed quadratically by the Planck energy---from the dispersion relations for free fields in the vacuum. The deviations from the special relativistic Doppler shifts predicted by the theory are also suppressed quadratically by the Planck energy. Nonetheless, in order to estimate the precision required to distinguish the theory from special relativity, an experiment with a binary pulsar emitting TeV range gamma-rays is considered in the context of the predicted deviations from the second-order shifts.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    3 ( #223,856 of 1,088,372 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.