Complete and atomic algebras of the infinite valued łukasiewicz logic

Studia Logica 50 (3-4):375 - 384 (1991)
Abstract
The infinite-valued logic of ukasiewicz was originally defined by means of an infinite-valued matrix. ukasiewicz took special forms of negation and implication as basic connectives and proposed an axiom system that he conjectured would be sufficient to derive the valid formulas of the logic; this was eventually verified by M. Wajsberg. The algebraic counterparts of this logic have become know as Wajsberg algebras. In this paper we show that a Wajsberg algebra is complete and atomic (as a lattice) if and only if it is a direct product of finite Wajsberg chains. The classical characterization of complete and atomic Boolean algebras as fields of sets is a particular case of this result.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,322
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

9 ( #148,863 of 1,096,498 )

Recent downloads (6 months)

3 ( #90,211 of 1,096,498 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.