Two notions of compactness in gödel logics

Studia Logica 81 (1):99 - 122 (2005)
Compactness is an important property of classical propositional logic. It can be defined in two equivalent ways. The first one states that simultaneous satisfiability of an infinite set of formulae is equivalent to the satisfiability of all its finite subsets. The second one states that if a set of formulae entails a formula, then there is a finite subset entailing this formula as well. In propositional many-valued logic, we have different degrees of satisfiability and different possible definitions of entailment, hence the questions of compactness is more complex. In this paper we will deal with compactness of Gödel, GödelΔ, and Gödel∼ logics.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,675
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

10 ( #366,034 of 1,938,950 )

Recent downloads (6 months)

4 ( #162,443 of 1,938,950 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.