Trading Spaces: Connectionism and the Limits of Uninformed Learning

Abstract
It is widely appreciated that the difficulty of a particluar computation varies according to how the input data are presented. What is less understood is the effect of this computation/representation tradeoff within familiar learning paradigms. We argue that existing learning algoritms are often poorly equipped to solve problems involving a certain type of important and widespread regularity, which we call 'type-2' regularity. The solution in these cases is to trade achieved representation against computational search. We investigate several ways in which such a trade-off may be pursued including simple incremental learning, modular connectionism, and the developmental hypothesis of 'representational redescription'. In addition, the most distinctive features of human cognition- language and culture- may themselves be viewed as adaptions enabling this representation/computation trade-off to be pursued on an even grander scale.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,612
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-07-22

Total downloads

8 ( #168,005 of 1,098,414 )

Recent downloads (6 months)

1 ( #285,057 of 1,098,414 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.