Trading Spaces: Connectionism and the Limits of Uninformed Learning

It is widely appreciated that the difficulty of a particluar computation varies according to how the input data are presented. What is less understood is the effect of this computation/representation tradeoff within familiar learning paradigms. We argue that existing learning algoritms are often poorly equipped to solve problems involving a certain type of important and widespread regularity, which we call 'type-2' regularity. The solution in these cases is to trade achieved representation against computational search. We investigate several ways in which such a trade-off may be pursued including simple incremental learning, modular connectionism, and the developmental hypothesis of 'representational redescription'. In addition, the most distinctive features of human cognition- language and culture- may themselves be viewed as adaptions enabling this representation/computation trade-off to be pursued on an even grander scale.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #314,307 of 1,940,986 )

Recent downloads (6 months)

2 ( #333,940 of 1,940,986 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.