The fine structure of real mice

Journal of Symbolic Logic 63 (3):937-994 (1998)
Before one can construct scales of minimal complexity in the Real Core Model, K(R), one needs to develop the fine-structure theory of K(R). In this paper, the fine structure theory of mice, first introduced by Dodd and Jensen, is generalized to that of real mice. A relative criterion for mouse iterability is presented together with two theorems concerning the definability of this criterion. The proof of the first theorem requires only fine structure; whereas, the second theorem applies to real mice satisfying AD and follows from a general definability result obtained by abstracting work of John Steel on L(R). In conclusion, we discuss several consequences of the work presented in this paper relevant to two issues: the complexity of scales in K(R) and the strength of the theory ZF + AD + ¬ DC R
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,230 of 1,088,833 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.