Les modeLes sigmoides en biologie vegetale

Acta Biotheoretica 39 (3-4) (1991)
Abstract
Observed biological growth curves generally are sigmoid in appearance. It is common practice to fit such data with either a Verhulst logistic or a Gompertz curve. This paper critically considers the conceptual bases underlying these descriptive models.The logistic model was developed by Verhulst to accommodate the common sense observation that populations cannot keep growing indefinitely. A justification for using the same equation to describe the growth of individuals, based on considerations from chemical kinetics (autocatalysis of a monomolecular reaction), was put forward by Richardson, but met with heavy criticism as a result of his erroneous derivation of the basic equation (Snell, 1929). It errs on the side of over-simplicity (Priestley & Pearsall, 1922). Von Bertalanffy (1957) subsequently based a justification on the assumption that, as a first approximation, the rates of catabolism and anabolism may be assumed to be proportional to weight and power (still vacant places, between the maximal possible and the already accumulated population sizes. This point of view was fiercely challenged by Nicholson (1933), Milne (1962), Smith (1954) and Rubinov (1973). And indeed, what is meant by vacant places has never become entirely clear. Finally Lotka (1925) devised a third leading approach by just truncating a Taylor expansion around zero of the differential law for autonomous growth after the second degree term.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    2 ( #258,148 of 1,088,378 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.