Filter distributive logics

Studia Logica 43 (4):353 - 377 (1984)
Abstract
The present paper is thought as a formal study of distributive closure systems which arise in the domain of sentential logics. Special stress is laid on the notion of a C-filter, playing the role analogous to that of a congruence in universal algebra. A sentential logic C is called filter distributive if the lattice of C-filters in every algebra similar to the language of C is distributive. Theorem IV.2 in Section IV gives a method of axiomatization of those filter distributive logics for which the class Matr (C) prime of C-prime matrices (models) is axiomatizable. In Section V, the attention is focused on axiomatic strengthenings of filter distributive logics. The theorems placed there may be regarded, to some extent, as the matrix counterparts of Baker's well-known theorem from universal algebra [9, § 62, Theorem 2].
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #256,049 of 1,101,746 )

Recent downloads (6 months)

1 ( #292,275 of 1,101,746 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.