Are tableaux an improvement on truth-tables?

We show that Smullyan's analytic tableaux cannot p-simulate the truth-tables. We identify the cause of this computational breakdown and relate it to an underlying semantic difficulty which is common to the whole tradition originating in Gentzen's sequent calculus, namely the dissonance between cut-free proofs and the Principle of Bivalence. Finally we discuss some ways in which this principle can be built into a tableau-like method without affecting its analytic nature.
Keywords tableaux  truth-tables  computational complexity  theorem-proving
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA
    Raymond M. Smullyan (1968). First-Order Logic. New York [Etc.]Springer-Verlag.
    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    5 ( #178,779 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.