Elementary realizability

Journal of Philosophical Logic 26 (3):311-339 (1997)
Abstract
A realizability notion that employs only Kalmar elementary functions is defined, and, relative to it, the soundness of EA-(Π₁⁰-IR), a fragment of Heyting Arithmetic (HA) with names and axioms for all elementary functions and induction rule restricted to Π₁⁰ formulae, is proved. As a corollary, it is proved that the provably recursive functions of EA-(Π₁⁰-IR) are precisely the elementary functions. Elementary realizability is proposed as a model of strict arithmetic constructivism, which allows only those constructive procedures for which the amount of computational resources required can be bounded in advance
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    34 ( #43,036 of 1,088,404 )

    Recent downloads (6 months)

    2 ( #42,750 of 1,088,404 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.