The Computational and Experimental Complexity of Gene Perturbations for Regulatory Network Search

Abstract
Various algorithms have been proposed for learning (partial) genetic regulatory networks through systematic measurements of differential expression in wild type versus strains in which expression of specific genes has been suppressed or enhanced, as well as for determining the most informative next experiment in a sequence. While the behavior of these algorithms has been investigated for toy examples, the full computational complexity of the problem has not received sufficient attention. We show that finding the true regulatory network requires (in the worst-case) exponentially many experiments (in the number of genes). Perhaps more importantly, we provide an algorithm for determining the set of regulatory networks consistent with the observed data. We then show that this algorithm is infeasible for realistic data (specifically, nine genes and ten experiments). This infeasibility is not due to an algorithmic flaw, but rather to the fact that there are far too many networks consistent with the data (10 18 in the provided example). We conclude that gene perturbation experiments are useful in confirming regulatory network models discovered by other techniques, but not a feasible search strategy.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Rosario M. Piro (2011). Are All Genes Regulatory Genes? Biology and Philosophy 26 (4):595-602.
    Ehud Lamm (2009). Conceptual and Methodological Biases in Network Models. Annals of the New York Academy of Sciences 1178:291-304.
    Sharon S. Krag (2010). Issues in Data Management. Science and Engineering Ethics 16 (4):743-748.
    Margi Joshi & Sharon Krag (2010). Issues in Data Management. Science and Engineering Ethics 16 (4):743-748.
    Analytics

    Monthly downloads

    Added to index

    2010-12-22

    Total downloads

    4 ( #198,584 of 1,088,810 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.