Quantum vacuum noise in physics and cosmology

Abstract
The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. © 2001 American Institute of Physics.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,361
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Michael Redhead (1994). The Vacuum in Relativistic Quantum Field Theory. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:77 - 87.
Svend E. Rugh & Henrik Zinkernagel (2002). The Quantum Vacuum and the Cosmological Constant Problem. Studies in History and Philosophy of Science Part B 33 (4):663-705.
E. S. & H. Zinkernagel (2002). The Quantum Vacuum and the Cosmological Constant Problem. Studies in History and Philosophy of Science Part B 33 (4):663-705.
David Z. Albert (1988). On the Possibility That the Present Quantum State of the Universe is the Vacuum. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:127 - 133.
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

21 ( #82,692 of 1,102,700 )

Recent downloads (6 months)

1 ( #296,833 of 1,102,700 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.