A general theorem on termination of rewriting

We re-express our theorem on the strong-normalisation of display calculi as a theorem about the well-foundedness of a certain ordering on first-order terms, thereby allowing us to prove the termination of systems of rewrite rules. We first show how to use our theorem to prove the well-foundedness of the lexicographic ordering, the multiset ordering and the recursive path ordering. Next, we give examples of systems of rewrite rules which cannot be handled by these methods but which can be handled by ours. Finally, we show that our method can also prove the termination of the Knuth-Bendix ordering and of dependency pairs. Keywords: rewriting, termination, well-founded ordering, recursive path ordering..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,658
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

3 ( #483,044 of 1,726,065 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,065 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.