A Husserlian Perspective on Empirical Mathematics in Aristotle

Abstract
Examples are presented of Aristotle’s use of non-idealized mathematics. Distinctions Husserl makes in Crisis help to delineate the features of this empiricalmathematics, which include the non-persistence of mathematical aspects of things and the selective application of mathematical traits and proper accidents. In antiquity, non-abstracted mathematics was involved with practical sciences that treat motion. The suggestion is made that these sciences were incorporated by Aristotle into natural philosophy without first being abstracted as pure mathematics—a state of affairs not envisioned by Husserl, for whom science recast natural ontology by means of the idealization of pure mathematics. The relation of empirical mathematics to life-world ontology is considered
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #177,087 of 1,100,147 )

Recent downloads (6 months)

4 ( #90,429 of 1,100,147 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.