# The inclusion-exclusion principle for finitely many isolated sets

Journal of Symbolic Logic 51 (2):435-447 (1986)
Abstract
A nonnegative interger is called a number, a collection of numbers a set and a collection of sets a class. We write ε for the set of all numbers, o for the empty set, N(α) for the cardinality of $\alpha, \subset$ for inclusion and $\subset_+$ for proper inclusion. Let α, β 1 ,...,β k be subsets of some set ρ. Then α' stands for ρ-α and β 1 ⋯ β k for β 1 ∩ ⋯ ∩ β k . For subsets α 1 ,..., α r of ρ we write: $\alpha_\sigma - \{x \in v \ (\nabla i) \lbrack i \in \sigma \Rightarrow x \in \alpha_i\rbrack\} \text{for} \sigma \subset (1, \ldots, r),\\ s_i = \sum \{N(\alpha_\sigma) \mid \sigma \subset (1,\ldots, r) \& N(\sigma) = i\}, \text{for} 0 \leqq i \leqq r$ . Note that α 0 = v, hence s 0 = N(v). If the set v is finite, the classical inclusion-exclusion principle (abbreviated IEP) states $(a) N(\alpha_1 \cup \cdots \cup \alpha_r) = \sum^r_{t=1} (-1)^{t-1} s_t = \sum_{o \subset_+\sigma \subset (1,\ldots,r)}$ (b) N(α' 1 ⋯ α' r ) = ∑ r t=0 (-1) t s t = ∑ (-1) N(σ) N (α σ ). In this paper we generalize (a) and (b) to the case where α 1 ,⋯, α r are subsets of some countable but isolated set v. Then the role of the cardinality N(α) of the set α is played by the RET (recursive equivalence type) Req α of α. These generalization of (a) and (b) are proved in § 3. Since they involve recursive distinctness, this notion is discussed in § 2. In § 4l we consider a natural extension of "the sum of the elements of a finite set σ" to the case where σ is countable. § 5 deals with valuations, i.e., certain mappings μ from classes of isolated sets into the collection λ of all isols which permit us to further generalize IEP by substituting μ(α) for $\operatorname{Req} \alpha$
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274067
Options
 Save to my reading list Follow the author(s) My bibliography Export citation Find it on Scholar Edit this record Mark as duplicate Revision history Request removal from index

 PhilPapers Archive Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,211 External links Setup an account with your affiliations in order to access resources via your University's proxy server Configure custom proxy (use this if your affiliation does not provide a proxy) Through your library Sign in / register and configure your affiliation(s) to use this tool.Configure custom resolver
References found in this work BETA
Citations of this work BETA

No citations found.

Similar books and articles

2009-01-28

17 ( #227,992 of 1,935,154 )