Frege's theory of concepts and objects and the interpretation of second-order logict

Philosophia Mathematica 1 (2):139-156 (1993)
Abstract
This paper casts doubt on a recent criticism of Frege's theory of concepts and extensions by showing that it misses one of Frege's most important contributions: the derivation of the infinity of the natural numbers. We show how this result may be incorporated into the conceptual structure of Zermelo- Fraenkel Set Theory. The paper clarifies the bearing of the development of the notion of a real-valued function on Frege's theory of concepts; it concludes with a brief discussion of the claim that the standard interpretation of second-order logic is necessary for the derivation of the Peano Postulates and the proof of their categoricity.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

33 ( #53,571 of 1,102,742 )

Recent downloads (6 months)

7 ( #36,549 of 1,102,742 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.