The logic of Peirce algebras

Abstract
Peirce algebras combine sets, relations and various operations linking the two in a unifying setting. This paper offers a modal perspective on Peirce algebras. Using modal logic a characterization of the full Peirce algebras is given, as well as a finite axiomatization of their equational theory that uses so-called unorthodox derivation rules. In addition, the expressive power of Peirce algebras is analyzed through their connection with first-order logic, and the fragment of first-order logic corresponding to Peirce algebras is described in terms of bisimulations.
Keywords Peirce algebras  modal logic  algebraic logic  relation algebras  logics of programs  knowledge representation
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,084
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

18 ( #98,445 of 1,101,878 )

Recent downloads (6 months)

3 ( #128,836 of 1,101,878 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.