How the world became mathematical

Abstract
My title, of course, is an exaggeration. The world no more became mathematical in the seventeenth century than it became ironic in the nineteenth. Either it was mathematical all along, and seventeenth-century philosophers discovered it was, or, if it wasn’t, it could not have been made so by a few books. What became mathematical was physics, and whether that has any bearing on the furniture of the universe is one topic of this paper. Garber says, and I agree, that for Descartes bodies are the things of geometry made real ( Ref). That is a claim about the world: what God created, and what we know in physics, is nothing other than res extensa and its modes. Others, including Marion, hold that in modern science, here represented at its origins by Descartes, representation displaces beings: the knower no longer confronts Being or beings but rather a system of signs, a “code” as Marion calls it, to which the knower stands in the relation of subject to object. The Meditations, or perhaps even the Regulæ, are the first step toward the transcendental idealism of Kant. Most of this paper will be devoted to a more concrete question. Physics in the seventeenth century increasingly became a matter of applying mathematical knowledge to the solution of physical problems. The “mixed sciences” of astronomy, optics, and music, sciences then distinct from physics, became models of understanding for all of natural philosophy. My interest here is in one aspect of that development: how particular physical situations are transformed into mathematical. I will look at the work of Descartes and Isaac Beeckman, contrasting their visions of “physico-mathematics”.
Keywords philosophy of science  mathematization  early modern  natural philosophy
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,731
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Jill North (2009). The “Structure” of Physics. Journal of Philosophy 106 (2):57-88.
Leon Horsten, Philosophy of Mathematics. Stanford Encyclopedia of Philosophy.
S. Gaukroger & J. Schuster (2002). The Hydrostatic Paradox and the Origins of Cartesian Dynamics. Studies in History and Philosophy of Science Part A 33 (3):535-572.
Masaki Hrada (2008). Revision of Phenomenology for Mathematical Physics. Proceedings of the Xxii World Congress of Philosophy 43:73-80.
James W. McAllister (1997). Laws of Nature, Natural History, and the Description of the World. International Studies in the Philosophy of Science 11 (3):245 – 258.
Analytics

Monthly downloads

Added to index

2010-12-22

Total downloads

27 ( #63,134 of 1,098,638 )

Recent downloads (6 months)

1 ( #285,836 of 1,098,638 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.