Poincaré vs. Russell on the rôle of logic in mathematicst

Philosophia Mathematica 1 (1):24-49 (1993)
Abstract
In the early years of this century, Poincaré and Russell engaged in a debate concerning the nature of mathematical reasoning. Siding with Kant, Poincaré argued that mathematical reasoning is characteristically non-logical in character. Russell urged the contrary view, maintaining that (i) the plausibility originally enjoyed by Kant's view was due primarily to the underdeveloped state of logic in his (i.e., Kant's) time, and that (ii) with the aid of recent developments in logic, it is possible to demonstrate its falsity. This refutation of Kant's views consists in showing that every known theorem of mathematics can be proven by purely logical means from a basic set of axioms. In our view, Russell's alleged refutation of Poincaré's Kantian viewpoint is mistaken. Poincaré's aim (as Kant's before him) was not to deny the possibility of finding a logical ‘proof’ for each theorem. Rather, it was to point out that such purely logical derivations fail to preserve certain of the important and distinctive features of mathematical proof. Against such a view, programs such as Russell's, whose main aim was to demonstrate the existence of a logical counterpart for each mathematical proof, can have but little force. For what is at issue is not whether each mathematical theorem can be fitted with a logical ‘proof’, but rather whether the latter has the epistemic features that a genuine mathematical proof has.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,948
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

40 ( #42,128 of 1,100,779 )

Recent downloads (6 months)

1 ( #289,565 of 1,100,779 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.