A general representation for internal proportional cornbinatorial measurement systems when the operation is not necessari!Y closed

Theoria 14 (1):157-178 (1999)
Abstract
The aim of this paper is to give one kind of internal proportional systems with general representation and without closure and finiteness assumptions. First, we introduce the notions of internal proportional system and of general representation. Second, we briefly review the existing results which motivate our generalization. Third, we present the new systems, characterized by the fact that the linear order induced by the comparison weak order ≥ at the level of equivalence classes is also a weIl order. We prove the corresponding representation theorem and make some comments on strong limitations of uniqueness; we present in an informal way a positive result, restricted uniqueness for what we call connected objects. We conclude with some final remarks on the property that characterizes these systems and on three possible empirical applications
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    1 ( #306,128 of 1,088,398 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,398 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.