Almost everywhere domination

Journal of Symbolic Logic 69 (3):914-922 (2004)
Abstract
A Turing degree a is said to be almost everywhere dominating if, for almost all $X \in 2^{\omega}$ with respect to the "fair coin" probability measure on $2^{\omega}$ , and for all g: $\omega \rightarrow \omega$ Turing reducible to X, there exists f: $\omega \rightarrow \omega$ of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in the reverse mathematics of measure theory
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,095
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
George Barmpalias (2012). Tracing and Domination in the Turing Degrees. Annals of Pure and Applied Logic 163 (5):500-505.
Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-02-05

Total downloads

1 ( #459,819 of 1,102,075 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.