Cartesian isomorphisms are symmetric monoidal: A justification of linear logic

Journal of Symbolic Logic 64 (1):227-242 (1999)
It is proved that all the isomorphisms in the cartesian category freely generated by a set of objects (i.e., a graph without arrows) can be written in terms of arrows from the symmetric monoidal category freely generated by the same set of objects. This proof yields an algorithm for deciding whether an arrow in this free cartesian category is an isomorphism
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    2 ( #258,148 of 1,088,374 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.