Minimum message length and statistically consistent invariant (objective?) Bayesian probabilistic inference—from (medical) “evidence”

Social Epistemology 22 (4):433 – 460 (2008)
Abstract
“Evidence” in the form of data collected and analysis thereof is fundamental to medicine, health and science. In this paper, we discuss the “evidence-based” aspect of evidence-based medicine in terms of statistical inference, acknowledging that this latter field of statistical inference often also goes by various near-synonymous names—such as inductive inference (amongst philosophers), econometrics (amongst economists), machine learning (amongst computer scientists) and, in more recent times, data mining (in some circles). Three central issues to this discussion of “evidence-based” are (i) whether or not the statistical analysis can and/or should be objective and/or whether or not (subjective) prior knowledge can and/or should be incorporated, (ii) whether or not the analysis should be invariant to the framing of the problem (e.g. does it matter whether we analyse the ratio of proportions of morbidity to non-morbidity rather than simply the proportion of morbidity?), and (iii) whether or not, as we get more and more data, our analysis should be able to converge arbitrarily closely to the process which is generating our observed data. For many problems of data analysis, it would appear that desiderata (ii) and (iii) above require us to invoke at least some form of subjective (Bayesian) prior knowledge. This sits uncomfortably with the understandable but perhaps impossible desire of many medical publications that at least all the statistical hypothesis testing has to be classical non-Bayesian—i.e. it is not permitted to use any (subjective) prior knowledge
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,825
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-02-01

Total downloads

13 ( #125,816 of 1,100,101 )

Recent downloads (6 months)

3 ( #127,217 of 1,100,101 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.