Knowledge-driven versus data-driven logics

Abstract
The starting point of this work is the gap between two distinct traditions in information engineering: knowledge representation and data-driven modelling. The first tradition emphasizes logic as a tool for representing beliefs held by an agent. The second tradition claims that the main source of knowledge is made of observed data, and generally does not use logic as a modelling tool. However, the emergence of fuzzy logic has blurred the boundaries between these two traditions by putting forward fuzzy rules as a Janus-faced tool that may represent knowledge, as well as approximate non-linear functions representing data. This paper lays bare logical foundations of data-driven reasoning whereby a set of formulas is understood as a set of observed facts rather than a set of beliefs. Several representation frameworks are considered from this point of view: classical logic, possibility theory, belief functions, epistemic logic, fuzzy rule-based systems. Mamdani's fuzzy rules are recovered as belonging to the data-driven view. In possibility theory a third set-function, different from possibility and necessity plays a key role in the data-driven view, and corresponds to a particular modality in epistemic logic. A bi-modal logic system is presented which handles both beliefs and observations, and for which a completeness theorem is given. Lastly, our results may shed new light in deontic logic and allow for a distinction between explicit and implicit permission that standard deontic modal logics do not often emphasize.
Keywords data-driven reasoning  deontic logic  epistemic logic  possibility theory
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

37 ( #50,232 of 1,101,833 )

Recent downloads (6 months)

9 ( #28,656 of 1,101,833 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.