Negation in the context of gaggle theory

Studia Logica 80 (2-3):235 - 264 (2005)
We study an application of gaggle theory to unary negative modal operators. First we treat negation as impossibility and get a minimal logic system Ki that has a perp semantics. Dunn's kite of different negations can be dealt with in the extensions of this basic logic Ki. Next we treat negation as “unnecessity” and use a characteristic semantics for different negations in a kite which is dual to Dunn's original one. Ku is the minimal logic that has a characteristic semantics. We also show that Shramko's falsification logic FL can be incorporated into some extension of this basic logic Ku. Finally, we unite the two basic logics Ki and Ku together to get a negative modal logic K-, which is dual to the positive modal logic K+ in [7]. Shramko has suggested an extension of Dunn's kite and also a dual version in [12]. He also suggested combining them into a “united” kite. We give a united semantics for this united kite of negations.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    5 ( #178,728 of 1,088,404 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,404 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.