Models of intuitionistic TT and N

Journal of Symbolic Logic 60 (2):640-653 (1995)
Abstract
Let us define the intuitionistic part of a classical theory T as the intuitionistic theory whose proper axioms are identical with the proper axioms of T. For example, Heyting arithmetic HA is the intuitionistic part of classical Peano arithmetic PA. It's a well-known fact, proved by Heyting and Myhill, that ZF is identical with its intuitionistic part. In this paper, we mainly prove that TT, Russell's Simple Theory of Types, and NF, Quine's "New Foundations," are not equal to their intuitionistic part. So, an intuitionistic version of TT or NF seems more naturally definable than an intuitionistic version of ZF. In the first section, we present a simple technique to build Kripke models of the intuitionistic part of TT (with short examples showing bad properties of finite sets if they are defined in the usual classical way). In the remaining sections, we show how models of intuitionistic NF 2 and NF can be obtained from well-chosen classical ones. In these models, the excluded middle will not be satisfied for some non-stratified sentences
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,808
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

3 ( #303,708 of 1,099,786 )

Recent downloads (6 months)

3 ( #126,844 of 1,099,786 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.