The role of axioms in mathematics

Erkenntnis 68 (3):381 - 391 (2008)
To answer the question of whether mathematics needs new axioms, it seems necessary to say what role axioms actually play in mathematics. A first guess is that they are inherently obvious statements that are used to guarantee the truth of theorems proved from them. However, this may neither be possible nor necessary, and it doesn’t seem to fit the historical facts. Instead, I argue that the role of axioms is to systematize uncontroversial facts that mathematicians can accept from a wide variety of philosophical positions. Once the axioms are generally accepted, mathematicians can expend their energies on proving theorems instead of arguing philosophy. Given this account of the role of axioms, I give four criteria that axioms must meet in order to be accepted. Penelope Maddy has proposed a similar view in Naturalism in Mathematics, but she suggests that the philosophical questions bracketed by adopting the axioms can in fact be ignored forever. I contend that these philosophical arguments are in fact important, and should ideally be resolved at some point, but I concede that their resolution is unlikely to affect the ordinary practice of mathematics. However, they may have effects in the margins of mathematics, including with regards to the controversial “large cardinal axioms” Maddy would like to support.
Keywords Philosophy   Logic   Ethics   Ontology   Epistemology   Philosophy
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,305
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Paul Benacerraf (1973). Mathematical Truth. Journal of Philosophy 70 (19):661-679.
Alan Hájek (2008). Interpretations of Probability. Stanford Encyclopedia of Philosophy.

View all 16 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

319 ( #7,732 of 1,932,544 )

Recent downloads (6 months)

18 ( #36,800 of 1,932,544 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.