Establishing Connections between Aristotle's Natural Deduction and First-Order Logic

History and Philosophy of Logic 29 (4):309-325 (2008)
This article studies the mathematical properties of two systems that model Aristotle's original syllogistic and the relationship obtaining between them. These systems are Corcoran's natural deduction syllogistic and ?ukasiewicz's axiomatization of the syllogistic. We show that by translating the former into a first-order theory, which we call T RD, we can establish a precise relationship between the two systems. We prove within the framework of first-order logic a number of logical properties about T RD that bear upon the same properties of the natural deduction counterpart ? that is, Corcoran's system. Moreover, the first-order logic framework that we work with allows us to understand how complicated the semantics of the syllogistic is in providing us with examples of bizarre, unexpected interpretations of the syllogistic rules. Finally, we provide a first attempt at finding the structure of that semantics, reducing the search to the characterization of the class of models of T RD.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1080/01445340801976516
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Benson Mates (1972). Elementary Logic. New York,Oxford University Press.
John Corcoran (1972). Completeness of an Ancient Logic. Journal of Symbolic Logic 37 (4):696-702.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

102 ( #30,299 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.