On the expressiveness of frame satisfiability and fragments of second-order logic

Journal of Symbolic Logic 63 (1):73-82 (1998)
Abstract
It was conjectured by Halpern and Kapron (Annals of Pure and Applied Logic, vol. 69, 1994) that frame satisfiability of propositional modal formulas is incomparable in expressive power to both Σ 1 1 (Ackermann) and Σ 1 1 (Bernays-Schonfinkel). We prove this conjecture. Our results imply that Σ 1 1 (Ackermann) and Σ 1 1 (Bernays-Schonfinkel) are incomparable in expressive power, already on finite graphs. Moreover, we show that on ordered finite graphs, i.e., finite graphs with a successor, Σ 1 1 (Bernays-Schonfinkel) is strictly more expressive than Σ 1 1 (Ackermann)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    2 ( #258,346 of 1,089,057 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.