Category theory and universal models: Adjoints and brain functors

Abstract
Since its formal definition over sixty years ago, category theory has been increasingly recognized as having a foundational role in mathematics. It provides the conceptual lens to isolate and characterize the structures with importance and universality in mathematics. The notion of an adjunction (a pair of adjoint functors) has moved to center-stage as the principal lens. The central feature of an adjunction is what might be called "internalization through a universal" based on universal mapping properties. A recently developed "heteromorphic" theory of adjoint functors allows the concepts to be more easily applied empirically. This suggests a conceptual structure, albeit abstract, to model a range of selectionist mechanisms (e.g., in evolution and in the immune system). Closely related to adjoints is the notion of a "brain functor" which abstractly models structures of cognition and action (e.g., the generative grammar view of language).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-03-27

    Total downloads

    64 ( #19,204 of 1,088,370 )

    Recent downloads (6 months)

    1 ( #69,449 of 1,088,370 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.