On the nature of dimensions

Philosophy of Science 31 (4):357-380 (1964)
In the first part of this paper it is shown that unit names, whether simple or complex, whether of fundamental, associative or derivative measurement, may always be regarded as the names of scales. In the second it is shown that dimension names, whether simple, like "[M]", "[L]" and "[T]", or complex dimensional formulae, may always be regarded as the names of classes of similar scales. Thus, a new foundation for the theory of dimensional analysis is provided, and in the light of this, its nature and scope are examined. Dimensional analysis is shown to depend upon certain conventions for expressing numerical laws
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    6 ( #162,810 of 1,088,379 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.