Power-like models of set theory

Journal of Symbolic Logic 66 (4):1766-1782 (2001)
Abstract
A model M = (M, E,...) of Zermelo-Fraenkel set theory ZF is said to be θ-like, where E interprets ∈ and θ is an uncountable cardinal, if |M| = θ but $|\{b \in M: bEa\}| for each a ∈ M. An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ 1 -like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal θ such that $2^{ then every consistent extension of ZF also has a θ + -like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ 2 -like model. Here we prove: THEOREM A. If θ has the tree property then the following are equivalent for any completion T of ZFC: (i) T has a θ-like model. (ii) $\Phi \subseteq T$ , where Φ is the recursive set of axioms {∃ κ(κ is n-Mahlo and "V κ is a Σ n -elementary submodel of the universe"): n ∈ ω}. (iii) T has a λ-like model for every uncountable cardinal λ. THEOREM B. The following are equiconsistent over ZFC: (i) "There exists an ω-Mahlo cardinal". (ii) "For every finite language L, all ℵ 2 -like models of ZFC(L) satisfy the scheme Φ(L)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,928
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

7 ( #184,859 of 1,100,561 )

Recent downloads (6 months)

7 ( #34,169 of 1,100,561 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.