Towards a natural language semantics without functors and operands

Abstract
The paper sets out to offer an alternative to the function/argument approach to the most essential aspects of natural language meanings. That is, we question the assumption that semantic completeness (of, e.g., propositions) or incompleteness (of, e.g., predicates) exactly replicate the corresponding grammatical concepts (of, e.g., sentences and verbs, respectively). We argue that even if one gives up this assumption, it is still possible to keep the compositionality of the semantic interpretation of simple predicate/argument structures. In our opinion, compositionality presupposes that we are able to compare arbitrary meanings in term of information content. This is why our proposal relies on an ‘intrinsically’ type free algebraic semantic theory. The basic entities in our models are neither individuals, nor eventualities, nor their properties, but ‘pieces of evidence’ for believing in the ‘truth’ or ‘existence’ or ‘identity’ of any kind of phenomenon. Our formal language contains a single binary non-associative constructor used for creating structured complex terms representing arbitrary phenomena. We give a finite Hilbert-style axiomatisation and a decision algorithm for the entailment problem of the suggested system.
Keywords Completeness  Compositionality  Decision algorithm  Finite axiomatisability  Finite entailment problem  Function/argument metaphor  Measurements  Natural language semantics  Pieces of evidence
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,269
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #158,446 of 1,096,214 )

Recent downloads (6 months)

1 ( #218,857 of 1,096,214 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.