What is an inference rule?

Journal of Symbolic Logic 57 (3):1018-1045 (1992)
Abstract
What is an inference rule? This question does not have a unique answer. One usually finds two distinct standard answers in the literature; validity inference $(\sigma \vdash_\mathrm{v} \varphi$ if for every substitution $\tau$, the validity of $\tau \lbrack\sigma\rbrack$ entails the validity of $\tau\lbrack\varphi\rbrack)$, and truth inference $(\sigma \vdash_\mathrm{t} \varphi$ if for every substitution $\tau$, the truth of $\tau\lbrack\sigma\rbrack$ entails the truth of $\tau\lbrack\varphi\rbrack)$. In this paper we introduce a general semantic framework that allows us to investigate the notion of inference more carefully. Validity inference and truth inference are in some sense the extremal points in our framework. We investigate the relationship between various types of inference in our general framework, and consider the complexity of deciding if an inference rule is sound, in the context of a number of logics of interest: classical propositional logic, a nonstandard propositional logic, various propositional modal logics, and first-order logic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,813 of 1,088,623 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,623 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.