Reasoning about partial functions with the aid of a computer

Erkenntnis 43 (3):279 - 294 (1995)
Abstract
Partial functions are ubiquitous in both mathematics and computer science. Therefore, it is imperative that the underlying logical formalism for a general-purpose mechanized mathematics system provide strong support for reasoning about partial functions. Unfortunately, the common logical formalisms — first-order logic, type theory, and set theory — are usually only adequate for reasoning about partial functionsin theory. However, the approach to partial functions traditionally employed by mathematicians is quite adequatein practice. This paper shows how the traditional approach to partial functions can be formalized in a range of formalisms that includes first-order logic, simple type theory, and Von-Neumann—Bernays—Gödel set theory. It argues that these new formalisms allow one to directly reason about partial functions; are based on natural, well-understood, familiar principles; and can be effectively implemented in mechanized mathematics systems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    5 ( #178,845 of 1,089,062 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,062 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.