Enriched stratified systems for the foundations of category theory

Four requirements are suggested for an axiomatic system S to provide the foundations of category theory: (R1) S should allow us to construct the category of all structures of a given kind (without restriction), such as the category of all groups and the category of all categories; (R2) It should also allow us to construct the category of all functors between any two given categories including the ones constructed under (R1); (R3) In addition, S should allow us to establish the existence of the usual basic mathematical structures and carry out the usual set-theoretical operations; and (R4) S should be shown to be consistent relative to currently accepted systems of set theory. This paper explains how all but parts of (R3) can be met using a system S extending NFU enriched by a stratified pairing operation; to meet more of (R3) a stronger system S∗ is introduced, but there are still some real obstacles to meeting this requirement in full. For (R4) it is sketched how both S and S∗ are shown to be consistent.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    43 ( #32,955 of 1,089,048 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,048 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.