Relationships between constructive, predicative and classical systems of analysis

Both the constructive and predicative approaches to mathematics arose during the period of what was felt to be a foundational crisis in the early part of this century. Each critiqued an essential logical aspect of classical mathematics, namely concerning the unrestricted use of the law of excluded middle on the one hand, and of apparently circular \impredicative" de nitions on the other. But the positive redevelopment of mathematics along constructive, resp. predicative grounds did not emerge as really viable alternatives to classical, set-theoretically based mathematics until the 1960s. Now we have a massive amount of information, to which this lecture will constitute an introduction, about what can be done by what means, and about the theoretical interrelationships between various formal systems for constructive, predicative and classical analysis.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Jeremy Avigad (2009). The Metamathematics of Ergodic Theory. Annals of Pure and Applied Logic 157 (2):64-76.
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    24 ( #61,015 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.