Counting the maximal intermediate constructive logics

Journal of Symbolic Logic 58 (4):1365-1401 (1993)
A proof is given that the set of maximal intermediate propositional logics with the disjunction property and the set of maximal intermediate predicate logics with the disjunction property and the explicit definability property have the power of continuum. To prove our results, we introduce various notions which might be interesting by themselves. In particular, we illustrate a method to generate wide sets of pairwise "constructively incompatible constructive logics". We use a notion of "semiconstructive" logic and define wide sets of "constructive" logics by representing the "constructive" logics as "limits" of decreasing sequences of "semiconstructive" logics. Also, we introduce some generalizations of the usual filtration techniques for propositional logics. For instance, "filtrations over rank formulas" are used to show that any two different logics belonging to a suitable uncountable set of "constructive" logics are "constructively incompatible"
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275149
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,914
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

79 ( #38,410 of 1,725,580 )

Recent downloads (6 months)

72 ( #13,804 of 1,725,580 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.