Truth, proofs and functions

Synthese 137 (1-2):43 - 58 (2003)
Abstract
There are two different ways to introduce the notion of truthin constructive mathematics. The first one is to use a Tarskian definition of truth in aconstructive (meta)language. According to some authors, (Kreisel, van Dalen, Troelstra ... ),this definition is entirely similar to the Tarskian definition of classical truth (thesis A).The second one, due essentially to Heyting and Kolmogorov, and known as theBrouwer–Heyting–Kolmogorov interpretation, is to explain informally what it means fora mathematical proposition to be constructively proved. According to other authors (Martin-Löfand Shapiro), this interpretation and the Tarskian definition of truth amount to thesame (thesis B). My aim in this paper is to show that thesis A is only reasonable, that thesis Bis false and to answer the following question: what is defined by the Tarskian definition ofconstructive truth?
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,999
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #185,324 of 1,101,091 )

Recent downloads (6 months)

1 ( #290,337 of 1,101,091 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.