On spectra of sentences of monadic second order logic with counting

Journal of Symbolic Logic 69 (3):617-640 (2004)
Abstract
We show that the spectrum of a sentence ϕ in Counting Monadic Second Order Logic (CMSOL) using one binary relation symbol and finitely many unary relation symbols, is ultimately periodic, provided all the models of ϕ are of clique width at most k, for some fixed k. We prove a similar statement for arbitrary finite relational vocabularies τ and a variant of clique width for τ-structures. This includes the cases where the models of ϕ are of tree width at most k. For the case of bounded tree-width, the ultimate periodicity is even proved for Guarded Second Order Logic GSOL. We also generalize this result to many-sorted spectra, which can be viewed as an analogue of Parikh's Theorem on context-free languages, and its analogues for context-free graph grammars due to Habel and Courcelle. Our work was inspired by Gurevich and Shelah (2003), who showed ultimate periodicity of the spectrum for sentences of Monadic Second Order Logic where only finitely many unary predicates and one unary function are allowed. This restriction implies that the models are all of tree width at most 2, and hence it follows from our result
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-02-05

Total downloads

16 ( #97,038 of 1,096,467 )

Recent downloads (6 months)

1 ( #238,630 of 1,096,467 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.