Notes on Gibbard's theorem

Abstract
Let L be a sentential (object) language containing atoms ‘A’, ‘B’, . . . , and two logical connectives ‘&’ and ‘→’. In addition to these two logical connectives, L will also contain another binary connective ‘ ’, which is intended to be interpreted as the English indicative. In the meta-language for L , we will have two meta-linguistic operations: ‘ ’ and ‘ ’. ‘ ’ is a binary relation between individual sentences in L . It will be interpreted as “single premise entailment” (or “single premise deducibility in L ”). ‘ ’ is a monadic predicate on sentences of L . It will be interpreted as “logical truth of the logic of L ” (or “theorem of the logic of L ”). We will not presuppose anything about the relationship between ‘ ’ and ‘ ’. Rather, we will state explicitly all assumptions about these meta-theoretic relations that will be required for Gibbard’s Theorem.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,346
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #247,088 of 1,096,632 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.