A mixed λ-calculus

Studia Logica 87 (2-3):269 - 294 (2007)
Abstract
The aim of this paper is to define a λ-calculus typed in aMixed (commutative and non-commutative) Intuitionistic Linear Logic. The terms of such a calculus are the labelling of proofs of a linear intuitionistic mixed natural deduction NILL, which is based on the non-commutative linear multiplicative sequent calculus MNL [RuetAbrusci 99]. This linear λ-calculus involves three linear arrows: two directional arrows and a nondirectional one (the usual linear arrow). Moreover, the -terms are provided with seriesparallel orders on free variables. We prove a normalization theorem which explicitly gives the behaviour of the order during the normalization procedure.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,760
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

2 ( #345,485 of 1,098,973 )

Recent downloads (6 months)

1 ( #287,052 of 1,098,973 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.