The paradox of idealization

Analysis 69 (3):461-469 (2009)
A well-known proof by Alonzo Church, first published in 1963 by Frederic Fitch, purports to show that all truths are knowable only if all truths are known. This is the Paradox of Knowability. If we take it, quite plausibly, that we are not omniscient, the proof appears to undermine metaphysical doctrines committed to the knowability of truth, such as semantic anti-realism. Since its rediscovery by Hart and McGinn ( 1976), many solutions to the paradox have been offered. In this article, we present a new proof to the effect that not all truths are knowable, which rests on different assumptions from those of the original argument published by Fitch. We highlight the general form of the knowability paradoxes, and argue that anti-realists who favour either an hierarchical or an intuitionistic approach to the Paradox of Knowability are confronted with a dilemma: they must either give up anti-realism or opt for a highly controversial interpretation of the principle that every truth is knowable.
Keywords Knowability  Anti-realism  Idealisation  Fitch's Paradox
Categories (categorize this paper)
DOI 10.1093/analys/anp069
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Michael Dummett (1975). Wang's Paradox. Synthese 30 (3-4):201--32.
Alexander Paseau (2008). Fitch's Argument and Typing Knowledge. Notre Dame Journal of Formal Logic 49 (2):153-176.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

118 ( #23,615 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.