The universal group of a Heyting effect algebra

Studia Logica 84 (3):407 - 424 (2006)
Abstract
A Heyting effect algebra (HEA) is a lattice-ordered effect algebra that is at the same time a Heyting algebra and for which the Heyting center coincides with the effect-algebra center. Every HEA is both an MV-algebra and a Stone-Heyting algebra and is realized as the unit interval in its own universal group. We show that a necessary and sufficient condition that an effect algebra is an HEA is that its universal group has the central comparability and central Rickart properties.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    2 ( #258,285 of 1,089,047 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.