Aristotelianism in the philosophy of mathematics

Studia Neoaristotelica 8 (1):3-15 (2011)
Abstract
Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of two heights, for example, is a perceivable and measurable real relation between properties of physical things, a relation that can be shared by the ratio of two weights or two time intervals. Ratios are an example of continuous quantity; discrete quantities, such as whole numbers, are also realised as relations between a heap and a unit-making universal. For example, the relation between foliage and being-a-leaf is the number of leaves on a tree, a relation that may equal the relation between a heap of shoes and being-a-shoe. Modern higher mathematics, however, deals with some real properties that are not naturally seen as quantity, so that the “science of quantity” theory of mathematics needs supplementation. Symmetry, topology and similar structural properties are studied by mathematics, but are about pattern, structure or arrangement rather than quantity.
Keywords Philosophy of mathematics  Aristotelianism  quantity  structure
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Edward N. Zalta (2007). Reflections on Mathematics. In V. F. Hendricks & Hannes Leitgeb (eds.), Philosophy of Mathematics: Five Questions. Automatic Press/VIP.
Paola Cantù, Bolzano Versus Kant: Mathematics as a Scientia Universalis. Philosophical Papers Dedicated to Kevin Mulligan.
Analytics

Monthly downloads

Added to index

2012-01-08

Total downloads

22 ( #81,900 of 1,100,144 )

Recent downloads (6 months)

5 ( #66,996 of 1,100,144 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.