Proof in mathematics: An introduction

Quakers Hill Press (1996)
Abstract
Why do students take the instruction "prove" in examinations to mean "go to the next question"? Because they have not been shown the simple techniques of how to do it. Mathematicians meanwhile generate a mystique of proof, as if it requires an inborn and unteachable genius. True, creating research-level proofs does require talent; but reading and understanding the proof that the square of an even number is even is within the capacity of most mortals.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Buy the book $8.48 used (44% off)   $11.05 new (27% off)   $13.50 direct from Amazon (10% off)    Amazon page
ISBN(s) 0646545094
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    65 ( #18,766 of 1,088,400 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,400 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.