Squares in Fork Arrow Logic

Journal of Philosophical Logic 32 (4):343 - 355 (2003)
In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is ᵎ x ᵎ for some set ᵎ) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/30227272
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Maarten De Rijke (1995). The Logic of Peirce Algebras. Journal of Logic, Language and Information 4 (3):227-250.
Yde Venema (1995). Cylindric Modal Logic. Journal of Symbolic Logic 60 (2):591-623.
Yde Venema (1998). Rectangular Games. Journal of Symbolic Logic 63 (4):1549-1564.
Maarten De Rijke (1998). A System of Dynamic Modal Logic. Journal of Philosophical Logic 27 (2):109 - 142.
Maarten de Rijke (1998). A System of Dynamic Modal Logic. Journal of Philosophical Logic 27 (2):109-142.
Franz Kutschervona (1997). T × W Completeness. Journal of Philosophical Logic 26 (3):241-250.

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

4 ( #424,619 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.