A theory of strong indiscernibles

The Complete Theory of Everything (CTE) is based on certain axioms of indiscernibility. Such axioms of indiscernibility have been given a philosophical justification by Kit Fine. I want to report on an attempt to give strong indiscernibility axioms which might also be subject to such philosophical analysis, and which prove the consistency of set theory; i.e., ZFC or more. In this way, we might obtain a (new kind of) philosophical consistency proof for mathematics.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

239 ( #5,897 of 1,726,249 )

Recent downloads (6 months)

228 ( #2,054 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.