On expansions of o-minimal structures

An o-minimal structure is any relational structure in any relational type in the first order predicate calculus with equality, where one symbol is reserved to be a dense linear ordering without endpoints, satisfying the following condition: that every first order definable subset of the domain is a finite union of intervals whose endpoints are in the domain or are ±•. First order definability always allows any parameters, unless explicitly indicated otherwise.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,209
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

151 ( #27,469 of 1,941,042 )

Recent downloads (6 months)

17 ( #40,325 of 1,941,042 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.