On expansions of o-minimal structures

Abstract
An o-minimal structure is any relational structure in any relational type in the first order predicate calculus with equality, where one symbol is reserved to be a dense linear ordering without endpoints, satisfying the following condition: that every first order definable subset of the domain is a finite union of intervals whose endpoints are in the domain or are ±•. First order definability always allows any parameters, unless explicitly indicated otherwise.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,738
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #252,371 of 1,098,791 )

Recent downloads (6 months)

1 ( #286,314 of 1,098,791 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.