On the property structure of realist collapse of quantum mechanics and the so-called "counting anomaly"

Abstract
The aim of this paper is two-fold. Recently, Lewis has presented an argument, now known as the `counting anomaly', that the spontaneous localization approach to quantum mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply to ordinary macroscopic objects. I will take this argument as the starting point for a discussion of the property structure of realist collapse interpretations of quantum mechanics in general. At the end of this I present a proof of the fact that the composition principle, which holds true in Standard Quantum Mechanics, fails in all realist collapse interpretations. On the basis of this result I reconsider the counting anomaly and show that what lies at the heart of the anomaly is the failure to appreciate the peculiarities of the property structure of collapse interpretations. Once this flaw is uncovered, the anomaly vanishes.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #445,646 of 1,102,806 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.