On proof terms and embeddings of classical substructural logics

Studia Logica 61 (2):199-221 (1998)
Abstract
There is an intimate connection between proofs of the natural deduction systems and typed lambda calculus. It is well-known that in simply typed lambda calculus, the notion of formulae-as-types makes it possible to find fine structure of the implicational fragment of intuitionistic logic, i.e., relevant logic, BCK-logic and linear logic. In this paper, we investigate three classical substructural logics (GL, GLc, GLw) of Gentzen's sequent calculus consisting of implication and negation, which contain some of the right structural rules. In terms of Parigot's -calculus with proper restrictions, we introduce a proof term assignment to these classical substructural logics. According to these notions, we can classify the -terms into four categories. It is proved that well-typed GLx--terms correspond to GLx proofs, and that a GLx--term has a principal type if stratified where x is nil, c, w or cw. Moreover, we investigate embeddings of classical substructural logics into the corresponding intuitionistic substructural logics. It is proved that the Gödel-style translations of GLx--terms are embeddings preserving substructural logics. As by-products, it is obtained that an inhabitation problem is decidable and well-typed GLx--terms are strongly normalizable.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    8 ( #138,621 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.